skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, Xiaoyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents the fabrication and characterization of highly selective, room-temperature gas sensors based on ternary zinc oxide–molybdenum disulfide–titanium dioxide (ZnO-MoS2-TiO2) nanoheterostructures. Integrating two-dimensional (2D) MoS2 with oxide nano materials synergistically combines their unique properties, significantly enhancing gas sensing performance. Comprehensive structural and chemical analyses, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR), confirmed the successful synthesis and composition of the ternary nanoheterostructures. The sensors demonstrated excellent selectivity in detecting low concentrations of nitrogen dioxide (NO2) among target gases such as ammonia (NH3), methane (CH4), and carbon dioxide (CO2) at room temperature, achieving up to 58% sensitivity at 4 ppm and 6% at 0.1 ppm for NO2. The prototypes demonstrated outstanding selectivity and a short response time of approximately 0.51 min. The impact of light-assisted enhancement was examined under 1 mW/cm2 weak ultraviolet (UV), blue, yellow, and red light-emitting diode (LED) illuminations, with the blue LED proving to deliver the highest sensor responsiveness. These results position ternary ZnO-MoS2-TiO2 nanoheterostructures as highly sensitive and selective room-temperature NO2 gas sensors that are suitable for applications in environmental monitoring, public health, and industrial processes. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. It is a challenging task to fabricate thermally stable Photodetectors (PDs) working in visible light spectrum range due to the degradation in photoresponse characteristics. Herein, excellent performance parameters with photoresponsivity reached up to as high as 50 AW -1 , and ultrahigh specific detectivity in excess of 2.3×10 12 Jones have been obtained simultaneously in a single photodetector based on vertical MoS 2 (v-MoS 2 ) at a high temperature of 200°C. The TiO 2 interlay layer is ascribed as the main factor to enhance the PDs performances by reducing lattice mismatch between v-MoS 2 and substrate, separating photogenerated electron-hole pairs (EHPs), and the formation of the vertical MoS 2 nanostructures. Besides, the optoelectronics performances of the v-MoS 2 /TiO 2 heterostructures based field-effect transistor (FET) have also been examined under various operating temperatures, and the mechanism on how gate voltages affect the PDs performances has also been studied. In a word, the present fabricated v-MoS 2 /TiO 2 heterostructures based FET PDs will find practical applications in high-temperature environment. 
    more » « less
  4. null (Ed.)